Table of Contents

Program with WeDo 2.0
3-21

Build with WeDo 2.0
22-36
Programming is an important part of twenty-first century learning and it is an essential part of all of the WeDo 2.0 projects.

It gives life to the models that your pupils have created and it teaches them computational thinking skills.
Designing Solutions with LEGO® Programming Blocks

The WeDo 2.0 projects will take you and your pupils on a journey of using programming concepts to activate models and to create innovative solutions. These programming concepts have been organised by function in the Design Library.

These instructions are provided to inspire your pupils as they look for solutions. All of these functions can be used as described, or modified to suit a more specific need.
Introduction to a WeDo 2.0 Programming String

When your pupils want to bring their models to life, they will drag and drop blocks onto the Programming Canvas. As they do this, they will be creating programming strings. They can create multiple programming strings on the canvas, but each of the strings will need to begin with a Start Block.

Here are some important terms to know:

1. Start Block
 A Start Block is required in order to begin a programming string in the WeDo 2.0 software. ‘Execute’ means to start a series of actions until they are completed.

2. Programming Block
 Programming blocks are used in the WeDo 2.0 software to build a programming string. These blocks with symbols are used instead of text-based code.

3. Programming String
 A programming string is a sequence of programming blocks. The last block in the programming string marks the end of the program.
Different Types of Programming String

When your pupils explore programming for the first time, they will probably line up as many blocks as possible on the Programming Canvas. To carry out an idea that they have in mind, they will either arrange their blocks in a flow so that they are executed one after the other, or executed simultaneously.

Here are two important terms to know:

1. **Linear Sequence**
 A linear sequence is when blocks are placed one after the other in a linear fashion. The LEGO® Education WeDo 2.0 software will then execute one action after the other in the order in which the blocks have been placed.

2. **Parallel Sequence**
 A parallel sequence should be used when the pupils want to perform two or more actions simultaneously. In this case, the actions should be placed on different programming strings and executed at the same time using the various techniques that are available in the WeDo 2.0 software.

Suggestion
Tell your pupils to plan their programs in advance. This will help them when they are deciding the order in which the program actions should occur. They can use the Documentation tool to write the actions that they wish to program, step-by-step. They can also use a mind map of their own to help them to decide whether they should use a linear sequence or a parallel sequence.
Programming Principles

In developing programming strings as part of their solutions, your pupils will organise a series of actions and structures that will make their models come to life.

Here are some of the simplest programming principles that your pupils can use:

1. Output
 Output is something that is controlled by the program that the pupils are writing. Examples of outputs for WeDo 2.0 are sounds, lights, display and turning motors on and off.

2. Input
 Input is information that a computer or device receives. It can be inputted through the use of sensors in the form of a numeric or text value. For example, a sensor that detects or measures something (such as distance) converts that value into a digital input signal so that it can be used in a program.

3. Events (Wait For)
 The pupils can tell their program to wait for something to happen before continuing to execute the sequence of actions. Programs can wait for a specific length of time or wait for something to be detected by a sensor.

4. Loop
 The pupils can program actions to be repeated either forever or for a specific length of time.

5. Functions
 Functions are a group of actions that are to be used together in specific situations. For example, the group of blocks that can be used to make a light blink would together be called, ‘the blink function’.

6. Conditions
 Conditions are used by the pupils in order to program actions that are to be executed only under certain circumstances. Creating conditions within a program means that some part of the program will never be executed if the condition is never met. For example, if the Tilt Sensor is tilted left, the motor will start, and if the sensor is tilted right, the motor will stop; if the Tilt Sensor never tilts left, the motor will never start and if it never tilts right, then the motor will never stop.
What is Pseudocode?

Programming strings are designed for computers to understand and pseudocode is a way to explain a program so that people can understand it. Good pseudocode respects program structures but uses common words.

In WeDo 2.0, pseudocode can also be used to describe each step of a sequence. There are no specific rules to follow when you are writing pseudocode, but you will see that using a consistent structure will help you and your pupils while using it.

Example One
1. Start program
2. Start motor at power 1
3. Wait for 1 second
4. Stop motor

Example Two
1. Start program when ‘A’ is pressed
2. Wait for Tilt Sensor to detect Shake
3. Start motor this way
4. Repeat steps 2 and 3 forever

Example Three
1. Start program when ‘A’ is pressed
2. Wait for Tilt Sensor to detect No Tilt
3. Stop motor
4. Turn LED on colour 9 (red)
5. Repeat steps 2 and 4 forever
Description of Flow Blocks

1. **Start Block**
 - When used, it is always placed at the beginning of a programming string. Press on it to start the programming string that you have written.
 - *Pseudocode: Start program*

2. **Start On Message Block**
 - Always placed at the beginning of a programming string. It will wait for the correct message and then start the programming string that you have written.
 - *Pseudocode: Start program when receiving message 'abc'*

3. **Send Message**
 - Sends a message to the Programming Canvas. Every Start On Message Block with the same message will be activated. The message can be in the form of text or numbers.
 - *Pseudocode: Send message 'abc'*

4. **Wait For**
 - Use this block to tell the program to wait for something to happen. It can wait for a set length of time or for input from a sensor. This block always requires input in order to work properly.
 - *Pseudocode: Wait for ...*
Repeat Block
Use this block to repeat actions. Blocks that are placed inside the Repeat Block will be looped. This can also be called the ‘loop block’. The loop can be repeated forever, for a certain length of time or until something happens.

Pseudocode: Repeat step ... forever

Start On Key Press Block
When used, it is always placed at the beginning of a programming string. Press on it, or on the correct letter on the keyboard to start the programming string that you have written. All of the programming strings with the same letter will start at the same time. To change the letter of activation, long press on the block in order to access the keyboard.

Pseudocode: Start program on tap ‘A’
Description of Output Motor Blocks

1. **Motor This Way Block**
 Sets the motor to turn the axle clockwise and starts the motor. Tap on the block to quickly change the direction of the rotation.

 Pseudocode: Start motor this way

2. **Motor That Way Block**
 Sets the motor to turn the axle anticlockwise and starts the motor. Tap on the block to quickly change the direction of the rotation.

 Pseudocode: Start motor that way

3. **Motor Power Block**
 Sets the motor power to the specified level and starts the motor. The level can be set with a numeric input from 0 to 10.

 Pseudocode: Start motor at power 10

4. **Motor On For Block**
 Starts the motor for a chosen length of time that is specified in seconds. The length of time can be set with a numeric input, using whole or decimal numbers.

 Pseudocode: Start motor for 2 seconds
Motor Off Block
Stops any movement of the motor.

Pseudocode: Stop motor
Description of Light and Sound Blocks

1. **Light Block**

 Lights up the LED on the Smarthub in a specific colour. The colour can be changed with a numeric input between 0 and 10.

 Pseudocode: Turn LED on to colour 9 (red)
 Pseudocode: Turn LED off to colour 0 (no colour)

2. **Play Sound**

 Plays a sound. The sound is chosen from a list that is available within the software. You can choose a sound using a numeric input. Choose sound number 0 to play a sound that you have recorded yourself.

 Pseudocode: Play sound number 1
Description of Output Display Blocks

1. Display Background
 Use this block to display an image that is chosen from a list that is available within the software. You can set an image using a numeric input.

 Pseudocode: Show image 1 on display

2. Display Block
 Use this block to open the display area on the software screen. Numbers or text will appear in the display area.

 Pseudocode: Show ... on display

3. Add to Display
 Adds a quantity to the number that is currently shown on the display. Enter the number that you wish to add. Tap on the block to change the mathematical operation.

 Pseudocode: Add ... to the number on display

4. Subtract from Display
 Subtracts a quantity from the number that is shown on the display. Enter the number that you wish to subtract. Tap on the block to change the mathematical operation.

 Pseudocode: Subtract ... from the number on display
Multiply Display
Multiplying the number that is shown on the display by a specified number. Enter the number that you wish to multiply by. Tap on the block to change the mathematical operation.

Pseudocode: Multiply by ... the number on display

Divide Display
Divides the number that is shown on the display by another number. Enter the number you wish to divide by. Tap on the block to change the mathematical operation.

Pseudocode: Divide by ... the number on display

Display Closed
Use this block to close the display area on the software screen. Tap on the block to change the size.

Pseudocode: Close the display

Display Full Size
Use this block to set the display area to full size. Tap on the block to change the size.

Pseudocode: Change the size of the display to maximum
Description of Output Display Blocks

1. Display Medium Size
 Use this block to set the display area to medium size. Tap on the block to change the size.

 Pseudocode: Change the size of the display to medium
Description of Sensor Change Inputs

1. **Any Distance Change**
 Inputs the Motion Sensor mode 'Any Distance Change' to a block.

2. **Distance Change Closer**
 Inputs the Motion Sensor mode 'decreasing distance between the sensor and an object' to a block.

3. **Distance Change Further**
 Inputs the Motion Sensor mode 'increasing distance between the sensor and an object' to a block.

4. **Shake**
 Inputs the Tilt Sensor mode 'Shake' to a block.

5. **Tilt Down**
 Inputs the Tilt Sensor mode 'Tilt Down' to a block.

6. **Tilt Up**
 Inputs the Tilt Sensor mode 'Tilt Up' to a block.

7. **Tilt Left**
 Inputs the Tilt Sensor mode 'Tilt Left' to a block.

8. **Tilt Right**
 Inputs the Tilt Sensor mode 'Tilt Right' to a block.
Description of Sensor Change Inputs

1. **Tilt Sensor No Tilt**
 - Inputs the Tilt Sensor mode ‘No Tilt’ (or horizontal position) to a block.

2. **Sound Sensor Change**
 - Inputs the Sound Sensor mode (from the device) ‘sound level change’ to a block.
Description of Numeric and Text Inputs

1. **Tilt Sensor Input**
 Inputs the numeric value that is generated by the Tilt Sensor (0, 3, 5, 7 or 9) to a block.

2. **Distance Sensor Input**
 Inputs the value that is detected by the Motion Sensor (from 0 to 10) to a block.

3. **Sound Sensor Input**
 Inputs the value that is detected by the Sound Sensor (from 0 to 10) to a block.

4. **Number Input**
 Inputs a numeric value to a block.

5. **Text Input**
 Inputs a text value to a block.

6. **Display Input**
 Inputs the numeric value that is shown on the display area to a block.

7. **Random Input**
 Inputs a random value to a block. The range of numbers is determined by the block to which it is attached.
Description of the Documenting Block

Bubble
Use the bubble to insert comments into your program. This is not a programming block.
Planning Your Work with Flowcharts

Flowcharts are an excellent tool for practising Abstraction and they can be a great way to help your pupils to plan and structure their solutions.

A simple flowchart can be explored by pupils at any grade level, but more complex charts should be reserved for pupils in the higher elementary grades.

Some conventions exist in regard to flowcharts, but you should focus on implementing these conventions only when your pupils completely understand the concept of mapping their ideas.

These conventions are:

- Use a circle (or oval) to represent the beginning and end of the flow
- Use arrows to indicate the flow direction
- Use a rectangle to indicate an input or output
- Use a diamond to indicate conditions
WeDo 2.0 has been designed to provide opportunities for pupils to sketch, build, and test prototypes and representations of objects, animals, and vehicles that have a real-world focus.

The hands-on approach encourages pupils to be fully engaged in the designing and building process.
Designing Solutions with LEGO® Bricks

The WeDo 2.0 projects will take you and your pupils on a journey of using mechanisms to bring models to life. These mechanisms have been organised by function in the Design Library.

These instructions are provided in order to inspire your pupils as they look for solutions. All of these functions use what are called ‘simple machines’ that you can explore with your pupils as they develop their ideas.
Base Models Exploration

Name of the Part: Gear
A gear is a toothed wheel that rotates and makes another part move. You can find gear wheels on your bike, they are linked together with a chain. A ‘gear train’ is created when gears are placed directly alongside each other.

Types of Gear Trains
- **Gear up:** a large gear drives a small gear in order to produce more rotations.
- **Gear down:** a small gear drives a larger gear in order to produce fewer rotations.

Gear trains are used in these Design Library base models:
Walk, Spin, Turn

Name of the Part: Bevel Gear
A bevel gear is an angled gear that can be placed perpendicular to another gear in order to change the axis of the rotation.

Bevel gears are used in these Design Library base models:
Flex, Wobble, Push, Turn
Base Models Exploration

Name of the Part: Rack
A rack is a flat element with teeth that engage a circular gear, which is often called a ‘pinion’. This pair of gears changes ordinary rotational motion into linear motion.

A rack is used in this Design Library base model:
Push

Name of the Part: Worm Gear
A worm is a continuous spiral groove like a screw, which meshes with a gear. The worm is designed to turn a normal gear, but the gear cannot turn the worm, therefore, it functions as a brake.

A worm gear is used in this Design Library base model:
Revolve
Base Models Exploration

Name of Part: Beam
A beam that is attached to a rotating part will become a piston. A piston is a moving component of a machine, which transfers the energy that is created by the motor into an up/down or forwards/backwards motion. The piston can push, pull or drive other mechanical elements of the same machine.

A beam is used in this Design Library base model:
Crank

Name of the Part: Wheels
A wheel is a circular element that rotates on an axis in order to produce propelled movement.

Wheels are used in these Design Library base models:
Wobble, Drive, Steer
Base Models Exploration

Name of the Part: Pulley
The pulley is a wheel with a groove in it where the belt rests. The belt is like a small rubber band that connects to a part of the model that is rotating, thereby transferring the rotation to a different part of the model.

Pulley up: a large pulley drives a small pulley in order to produce more rotations.
Pulley down: a small pulley drives a large pulley in order to produce fewer rotations.
Pulley twist: used in order to make shafts that are parallel, but that rotate in opposite directions.

Pulleys are used in these Design Library base models:
Reel, Lift, Drive, Sweep, Revolve, Grab

⚠️ Important
Using a pulley in a mechanism will prevent the model from breaking when it meets resistance as the belt will slip in the pulley.
Electronic Parts

Smarthub
The Smarthub acts as a wireless connector among your device and the other electronic parts, using Bluetooth Low Energy. It receives programming strings from the device and executes them.

The Smarthub has important features:
- Two ports to connect sensors or motors
- One LED
- Power button

The Smarthub uses AA batteries or the supplementary Rechargeable Battery as a power source.

The Bluetooth connection procedure between the Smarthub and your device is explained in the WeDo 2.0 Software.

The Smarthub will use color patterns to signal messages:
- Flashing white light: it is waiting for a Bluetooth connection.
- Blue light: a Bluetooth connection is established.
- Flashing orange light: the power provided to the motor is at its limit.
Electronic Parts

Smarthub Rechargeable Battery
(Supplementary Item)
Here are some guidelines for the Smarthub Rechargeable Battery:
• To have optimal hours of play without the adaptor connected, fully charge the battery first.
• There is no special demand for a charging pattern.
• Preferably, store the battery in a cool place.
• If the battery is installed in the Smarthub and not used from one to two months, recharge it again after this period.
• Do not let the battery charge for an extended period of time.

Medium Motor
A motor is what makes other things move. This Medium Motor uses electricity to make an axle rotate.

The motor can be started in both directions, can be stopped, and can turn at different speeds and for a specific amount of time (specified in seconds).
Electronic Parts: Sensors

Tilt Sensor
To interact with this sensor, tilt the part in different directions by following the arrows. This sensor detects changes within six different positions:
- Tilt This Way
- Tilt That Way
- Tilt Up
- Tilt Down
- No Tilt
- Shake

Make sure that your program displays the icon that corresponds to the position that you are trying to detect.

Motion Sensor
This sensor detects changes in distance from an object within its range in three different ways:
- Object moving closer
- Object moving farther away
- Object changing position

Make sure that your program displays the icon that corresponds to the position that you are trying to detect.
Part Names and Primary Functions

As pupils use the bricks, you may want to discuss proper vocabulary as well as functions for each part in the set.

- Some of them are structural parts that hold your model together.
- Some parts are connectors that link elements to each other.
- Some parts are used to produce movement.

Important
Remember that these categories are guidelines. Some parts have many functions and can be used in many ways.

Suggestion
Use the cardboard box to help you sort the parts in the WeDo 2.0 storage box. This will help you and your pupils view and count the parts.
Structural Parts

2x - Angular plate, 1x2/2x2, white. No.6117840
6x - Plate, 1x2, white. No.302301
4x - Plate, 1x4, white. No.371001
4x - Plate, 1x6, white. No.366601
2x - Plate, 1x12, white. No.4514842
4x - Beam with plate, 2-modules, black. No.4144624
2x - Roof brick, 1x2/45°, black. No.4121966
2x - Plate, 2x16, black. No.428226
4x - Roof brick, 1x2x2, gray. No.4515374
2x - Frame plate, 4x4, gray. No.4612821
4x - Tile, 1x8, gray. No.4211481
2x - Brick, 2x2, gray. No.46525970
2x - Curved plate, 1x4x2/3, gray. No.6097093
2x - Round plate, 4x4, gray. No.6102828
2x - Curved brick, 1x6, transparent light blue. No.6032418
2x - Curved brick, 1x2x2, lime green. No.4537925
6x - Brick, 1x2, azure blue. No.6092674
4x - Roof brick, 1x3/25°, lime green. No.6132372
4x - Inverted roof brick, 1x2/45°, lime green. No.6136455
4x - Roof brick, 1x2x2, lime green. No.6132373
4x - Brick, 2x4, lime green. No.6132374
2x - Brick, 1x4, lime green. No.6132375
2x - Plate with holes, 2x8, bright green. No.6138494
4x - Roof brick, 1x3/25°, bright orange. No.6024286
4x - Inverted roof brick, 1x2/45°, bright orange. No.6136455
4x - Roof brick, 1x2x3, bright orange. No.6145262
4x - Brick, 2x4, bright orange. No.6100027
4x - Plate with holes, 2x4, bright orange. No.6132408
4x - Plate with holes, 2x6, bright orange. No.6132409
4x - Studded beam, 1x2, lime green. No.6132372
2x - Beam, 7-modules, bright green. No.6097397
4x - Studded beam, 1x4, lime green. No.6132373
2x - Plate with holes, 2x8, bright green. No.6138494
2x - Curved brick, 1x3, lime green. No.4537928
Connecting Parts

2x - Brick with stud on side, 1x1, white. No.4118981

4x - Bushing, 1-module, gray. No.4211622

2x - Bushing/axle extender, 2-module, gray. No.4512360

4x - Studded beam with crosshole, 1x2, dark gray. No.4239891

4x - Brick with connector peg, 1x2, gray. No.4211364

1x - Plate with hole, 2x3, gray. No.4211419

4x - Studded beam with crosshole, 1x2, dark gray. No.4210935

2x - Brick with 1 ball joint, 2x2, dark gray. No.4497253

1x - Bobbin, dark gray. No.4239891

2x - Chain, 16-modules, dark gray. No.4516456
Movement Parts

- 6x - Hub/pulley, 18x14 mm, white. No.6092236
- 1x - Worm gear, gray. No.42111510
- 4x - Gear rack, 10-tooth, white. No.4650465
- 4x - Gear, 8-tooth, dark gray. No.6012451
- 2x - Double bevel gear, 12-tooth, black. No.4177431
- 2x - Gear, 24-tooth, dark gray. No.6133119
- 2x - Gear, 24-tooth, black. No.6093977
- 2x - Double bevel gear, 20-tooth, black. No.6093977
- 2x - Round brick, 2x2, transparent light blue. No.4178398
- 4x - Tire, 30.4x4 mm, black. No.6026041
- 4x - Tire, 30.4x14 mm, black. No.4619323
- 2x - Tire, 37x18 mm, black. No.4506553
- 6x - Hub/pulley, 24x4 mm, transparent light blue. No.6096296
- 1x - Gear block, transparent. No.4142824
- 2x - Axle, 2-modules, red. No.4142265
- 2x - Axle, 2-modules, black. No.4188367
- 2x - Bevel gear, 20-tooth, black. No.4619323
- 2x - Bevel gear, 20-tooth, beige. No.6031962
- 2x - Connector peg with axle, 2-modules, black. No.609119
- 2x - Belt, 24 mm, bright orange. No.6105957
- 2x - Rubber beam with crossholes, 2-modules, black. No.4506553
- 1x - Axle, 6-modules, black. No.370626
- 2x - Tire, 30.4x14 mm, black. No.4619323
- 2x - Belt, 33 mm, beige. No.6031962
- 2x - Bevel gear, 20-tooth, black. No.4177431
- 2x - Axle, 3-modules, black. No.6089119
- 2x - Snowboard, yellow. No.4544151
- 2x - Bevel gear, 20-tooth, black. No.4211805
- 2x - Axle, 7-modules, gray. No.4211805
- 2x - Axle with stop, 4-modules, dark gray. No.6083620
- 2x - Axle, 3-modules, gray. No.4211815
- 2x - Axle, 10-modules, black. No.373726
- 2x - Axle, 3-modules, gray. No.4544143
- 2x - Axle, 2-modules, red. No.4544143

Build with WeDo 2.0
Decorative Parts

- 2x - Antenna, white. No.73737
- 2x - Round tile with eye, 1x1, white. No.6029156
- 2x - Round tile with eye, 2x2, white. No.6060734
- 2x - Round plate with 1 stud, 2x2, white. No.6093053
- 2x - Round tile with hole, 2x2, dark gray. No.6055313
- 4x - Round plate, 1x1, black. No.614128
- 6x - Skid plate, 2x2, black. No.4278359
- 2x - Round brick, 1x1, transparent green. No.3006848
- 2x - Grass, 1x1, bright green. No.6050929
- 2x - Round plate, 2x2, bright green. No.6138624
- 1x - Leaves, 2x2, bright green. No.4143562
- 2x - Round brick, 1x1, transparent yellow. No.3006844
- 2x - Round brick, 1x1, transparent red. No.3006841
- 1x - Flower, 2x2, red. No.6000020

Brick Separator

- 1x - Element separator, orange. No.4654448
Electronic Parts

1x - Tilt Sensor, white. No. 6109223

1x - Motion Sensor, white. No. 6109228

1x - Medium Motor, white. No. 6127110

1x - Smarthub, white. No. 6096146