
Getting started with EV3 MicroPython
Version 1.0.0

Mar 26, 2019

TABLE OF CONTENTS

1 Installation 2

2 Creating and running programs 8

3 ev3brick – The EV3 Programmable Brick 16

4 ev3devices – EV3 Motors and Sensors 20

5 parameters – Parameters and Constants 29

6 tools – Timing and Datalogging 37

7 robotics – Robotics module 38

8 Signals and Units 40

9 Robot Educator 43

10 Color Sorter 45

11 Robot Arm H25 49

Python Module Index 53

Index 54

LEGO, the LEGO logo, MINDSTORMS and the MINDSTORMS EV3 logo are trademarks and/or copyrights of the LEGO Group. © 2019 The LEGO Group. All rights reserved.

i

Getting started with EV3 MicroPython Version 1.0.0

This guide shows you how to get started writing MicroPython programs for your LEGO® MINDSTORMS® EV3
robots. You’ll learn to do so in two steps:

• Installation: First you’ll prepare your computer and your EV3 Brick by collecting and installing the required
tools. You’ll also learn how to turn the EV3 Brick on and off and to navigate the menu on the screen.

• Creating and running programs: Next, you’ll learn how to create a program and download it to the EV3 Brick.
You’ll also learn how to start that program from your computer or from the EV3 Brick.

After you’ve run the first demo program, you’ll be ready to try out the example programs and start inventing your own
programs.

LEGO, the LEGO logo, MINDSTORMS and the MINDSTORMS EV3 logo are trademarks and/or copyrights of the LEGO Group. © 2019 The LEGO Group. All rights reserved.

1

CHAPTER

ONE

INSTALLATION

This page guides you through the steps to collect and install everything you need to start programming.

1.1 What do you need?

To get started, you’ll need:

• A Windows 10 or Mac OS computer

• Internet access and administrator access

This is required during the installation only. You will not need special access to write and run pro-
grams later on.

• A microSD card

You’ll need a card with a minimum capacity of 4GB and a maximum capacity of 32GB. This type
of microSD card is also known as microSDHC. We recommend cards with Application Performance
Class A1.

• A microSD card slot or card reader in your computer

If your computer does not have a (micro)SD card slot, you can use an external USB (micro)SD card
reader.

• A mini-USB cable, like the one included with your EV3 set

The typical configuration of this equipment is summarized in Figure 1.1.

LEGO, the LEGO logo, MINDSTORMS and the MINDSTORMS EV3 logo are trademarks and/or copyrights of the LEGO Group. © 2019 The LEGO Group. All rights reserved.

2

Getting started with EV3 MicroPython Version 1.0.0

Figure 1.1: Setup overview

1.2 Preparing your computer

You’ll write your MicroPython programs using Visual Studio Code. Follow the steps below to download, install, and
configure this application:

1. Download Visual Studio Code.

2. Follow the on-screen instructions to install the application.

3. Launch Visual Studio Code.

4. Open the extensions tab.

5. Install the EV3 MicroPython extension as shown in Figure 1.2.

LEGO, the LEGO logo, MINDSTORMS and the MINDSTORMS EV3 logo are trademarks and/or copyrights of the LEGO Group. © 2019 The LEGO Group. All rights reserved.

3

https://code.visualstudio.com/Download

Getting started with EV3 MicroPython Version 1.0.0

Figure 1.2: Installing the extension from the Visual Studio Code marketplace

1.3 Preparing the microSD card

To make it possible to run MicroPython programs on your EV3 Brick, you’ll now learn how to install the required
tools on your microSD card.

If the microSD card contains files you want to keep, make sure to create a backup of its contents first. See managing
files on the EV3 to learn how to backup your previous MicroPython programs if necessary.

This process erases everything on your microSD card, including any previous MicroPython programs on it.

To install the MicroPython tools on your microSD card:

1. Download the EV3 MicroPython microSD card image and save it in a convenient location. This file is approxi-
mately 360 MB. You do not need to unzip the file.

2. Download and install a microSD card flashing tool such as Etcher.

3. Insert the microSD card into your computer or card reader.

4. Launch the flashing tool and follow the steps on your screen to install the file you have just downloaded. If you
use Etcher, you can follow the instructions below, as shown in Figure 1.3.

a. Select the EV3 MicroPython microSD card image file you have just downloaded.

b. Select your microSD card. Make sure that the device and size correspond to your microSD card.

c. Start the flashing process. This may take several minutes. Do not remove the card until the flashing process
is complete.

LEGO, the LEGO logo, MINDSTORMS and the MINDSTORMS EV3 logo are trademarks and/or copyrights of the LEGO Group. © 2019 The LEGO Group. All rights reserved.

4

https://education.lego.com/en-us/support/mindstorms-ev3/python-for-ev3
https://www.balena.io/etcher/

Getting started with EV3 MicroPython Version 1.0.0

Figure 1.3: Using Etcher to flash the EV3 MicroPython microSD card image

1.4 Updating the microSD card

To update the microSD card, download a new image file using the link above and flash it to the microSD card as
described above. Be sure to back up any MicroPython programs you want to save.

You do not need to erase the contents of the microSD card first. This is done automatically when you flash the new
image file.

1.5 Using the EV3 Brick

Make sure the EV3 Brick is turned off. Insert the microSD card you prepared into the microSD card slot on the EV3
Brick, as shown in Figure 1.4.

LEGO, the LEGO logo, MINDSTORMS and the MINDSTORMS EV3 logo are trademarks and/or copyrights of the LEGO Group. © 2019 The LEGO Group. All rights reserved.

5

Getting started with EV3 MicroPython Version 1.0.0

Figure 1.4: Inserting the flashed microSD card into the EV3 Brick

1.5.1 Turning the EV3 Brick on and off

Turn on the EV3 Brick by pressing the dark gray center button.

The boot process may take several minutes. While booting, the EV3 Brick status light turns orange and blinks inter-
mittently, and you’ll see a lot of text on the EV3 screen. The EV3 Brick is ready for use when the status light turns
green.

To turn the EV3 Brick off, open the shutdown menu with the back button, and then select Power Off using the center
button, as shown in Figure 1.5.

Figure 1.5: Turning the EV3 Brick off

LEGO, the LEGO logo, MINDSTORMS and the MINDSTORMS EV3 logo are trademarks and/or copyrights of the LEGO Group. © 2019 The LEGO Group. All rights reserved.

6

Getting started with EV3 MicroPython Version 1.0.0

1.5.2 Viewing motor and sensor values

When you’re not running a program, you can view motor and sensor values using the device browser, as shown in
Figure 1.6.

Figure 1.6: Viewing motor and sensor values

1.5.3 Going back to the original firmware

You can go back to the LEGO® firmware and your LEGO programs at any time. To do so:

1. Turn the EV3 Brick off as shown above.

2. Wait for the screen and brick status light to turn off.

3. Remove the microSD card.

4. Turn the EV3 on.

LEGO, the LEGO logo, MINDSTORMS and the MINDSTORMS EV3 logo are trademarks and/or copyrights of the LEGO Group. © 2019 The LEGO Group. All rights reserved.

7

CHAPTER

TWO

CREATING AND RUNNING PROGRAMS

Now that you’ve set up your computer and EV3 Brick, you’re ready to start writing programs.

To make it easier to create and manage your programs, let’s first have a quick look at how MicroPython projects and
programs for your EV3 robots are organized.

Programs are organized into project folders, as shown in Figure 2.1. A project folder is a directory on your computer
that contains the main program (main.py) and other optional scripts or files. This project folder and all of its contents
will be copied to the EV3 Brick, where the main program will be run.

This page shows you how to create such a project and how to transfer it to the EV3 Brick.

Figure 2.1: A project contains a program called main.py and optional resources like sounds or MicroPython modules.

2.1 Creating a new project

To create a new project, open the EV3 MicroPython tab and click create a new project, as shown in Figure 2.2. Enter
a project name in the text field that appears and press Enter. When prompted, choose a location for this program and
confirm by clicking choose folder.

LEGO, the LEGO logo, MINDSTORMS and the MINDSTORMS EV3 logo are trademarks and/or copyrights of the LEGO Group. © 2019 The LEGO Group. All rights reserved.

8

Getting started with EV3 MicroPython Version 1.0.0

Figure 2.2: Creating a new project. This example is called getting_started, but you can choose any name.

When you create a new project, it already includes a file called main.py. To see its contents and to modify it, open it
from the file browser as shown in Figure 2.3. This is where you’ll write your programs.

If you are new to MicroPython programming, we recommend that you keep the existing code in place and add your
code to it.

Figure 2.3: Opening the default main.py program.

2.2 Opening an existing project

To open a project you created previously, click File and click Open Folder, as shown in Figure 2.4. Next, navigate
to your previously created project folder and click OK. You can also open your recently used projects using the Open
Recent menu option.

LEGO, the LEGO logo, MINDSTORMS and the MINDSTORMS EV3 logo are trademarks and/or copyrights of the LEGO Group. © 2019 The LEGO Group. All rights reserved.

9

Getting started with EV3 MicroPython Version 1.0.0

Figure 2.4: Opening a previously created project.

2.3 Connecting to the EV3 Brick with Visual Studio Code

To be able to transfer your code to the EV3 Brick, you’ll first need to connect the EV3 Brick to your computer with
the mini-USB cable and configure the connection with Visual Studio Code. To do so:

• Turn the EV3 Brick on

• Connect the EV3 Brick to your computer with the mini-USB cable

• Configure the USB connection as shown in Figure 2.5.

LEGO, the LEGO logo, MINDSTORMS and the MINDSTORMS EV3 logo are trademarks and/or copyrights of the LEGO Group. © 2019 The LEGO Group. All rights reserved.

10

Getting started with EV3 MicroPython Version 1.0.0

Figure 2.5: Configuring the USB connection between the computer and the EV3 Brick

2.4 Downloading and running a program

You can press the F5 key to run the program. Alternatively, you can start it manually by going to the debug tab and
clicking the green start arrow, as shown in Figure 2.6.

When the program starts, a pop-up toolbar allows you to stop the program if necessary. You can also stop the program
at any time using the back button on the EV3 Brick.

If your program produces any output with the print command, this is shown in the output window.

LEGO, the LEGO logo, MINDSTORMS and the MINDSTORMS EV3 logo are trademarks and/or copyrights of the LEGO Group. © 2019 The LEGO Group. All rights reserved.

11

Getting started with EV3 MicroPython Version 1.0.0

Figure 2.6: Running a program

2.5 Expanding the example program

Now that you’ve run the basic code template, you can expand the program to make a motor move. First, attach a Large
Motor to Port B on the EV3 Brick, as shown in Figure 2.7.

LEGO, the LEGO logo, MINDSTORMS and the MINDSTORMS EV3 logo are trademarks and/or copyrights of the LEGO Group. © 2019 The LEGO Group. All rights reserved.

12

Getting started with EV3 MicroPython Version 1.0.0

Figure 2.7: The EV3 Brick with a Large Motor attached to port B.

Next, edit main.py to make it look like this:

#!/usr/bin/env pybricks-micropython

from pybricks import ev3brick as brick
from pybricks.ev3devices import Motor
from pybricks.parameters import Port

Play a sound.
brick.sound.beep()

Initialize a motor at port B.
test_motor = Motor(Port.B)

Run the motor up to 500 degrees per second. To a target angle of 90 degrees.
test_motor.run_target(500, 90)

Play another beep sound.
This time with a higher pitch (1000 Hz) and longer duration (500 ms).
brick.sound.beep(1000, 500)

This program makes your robot beep, rotate the motor, and beep again with a higher pitched tone. Run the program to
make sure that it works as expected.

LEGO, the LEGO logo, MINDSTORMS and the MINDSTORMS EV3 logo are trademarks and/or copyrights of the LEGO Group. © 2019 The LEGO Group. All rights reserved.

13

Getting started with EV3 MicroPython Version 1.0.0

2.6 Managing files on the EV3 Brick

After you’ve downloaded a project to the EV3 Brick, you can run, delete, or back up programs stored on it using the
device browser as shown in in Figure 2.8.

Figure 2.8: Using the EV3 device browser to manage files on your EV3 Brick

2.7 Running a program without a computer

You can run previously downloaded programs directly from the EV3 Brick.

To do so, find the program using the file browser on the EV3 screen and press the center button key to start the program
as shown in in Figure 2.9.

LEGO, the LEGO logo, MINDSTORMS and the MINDSTORMS EV3 logo are trademarks and/or copyrights of the LEGO Group. © 2019 The LEGO Group. All rights reserved.

14

Getting started with EV3 MicroPython Version 1.0.0

Figure 2.9: Starting a program using the buttons on the EV3 Brick

LEGO, the LEGO logo, MINDSTORMS and the MINDSTORMS EV3 logo are trademarks and/or copyrights of the LEGO Group. © 2019 The LEGO Group. All rights reserved.

15

CHAPTER

THREE

EV3BRICK – THE EV3 PROGRAMMABLE BRICK

LEGO® MINDSTORMS® EV3 Brick.

3.1 Buttons

buttons()
Check which buttons on the EV3 Brick are currently pressed.

Returns List of pressed buttons.

Return type List of Button

Examples:

Do something if the left button is pressed
if Button.LEFT in brick.buttons():

print("The left button is pressed.")

Wait until any of the buttons are pressed
while not any(brick.buttons()):

wait(10)

Wait until all buttons are released
while any(brick.buttons()):

wait(10)

3.2 Light

light(color)
Set the color of the brick light.

Parameters color (Color) – Color of the light. Choose Color.BLACK or None to turn the
light off.

Example:

Make the light red
brick.light(Color.RED)

Turn the light off
brick.light(None)

LEGO, the LEGO logo, MINDSTORMS and the MINDSTORMS EV3 logo are trademarks and/or copyrights of the LEGO Group. © 2019 The LEGO Group. All rights reserved.

16

Getting started with EV3 MicroPython Version 1.0.0

3.3 Sound

classmethod sound.beep(frequency=500, duration=100, volume=30)
Play a beep/tone.

Parameters

• frequency (frequency: Hz) – Frequency of the beep (Default: 500).

• duration (time: ms) – Duration of the beep (Default: 100).

• volume (percentage: %) – Volume of the beep (Default: 30).

Example:

A simple beep
brick.sound.beep()

A high pitch (1500 Hz) for one second (1000 ms) at 50% volume
brick.sound.beep(1500, 1000, 50)

classmethod sound.beeps(number)
Play a number of default beeps with a brief pause in between.

Parameters number (int) – Number of beeps.

Example:

Make 5 simple beeps
brick.sound.beeps(5)

classmethod sound.file(file_name, volume=100)
Play a sound file.

Parameters

• file_name (str) – Path to the sound file, including extension.

• volume (percentage: %) – Volume of the sound (Default: 100).

Example:

Play one of the built-in sounds
brick.sound.file(SoundFile.HELLO)

Play a sound file from your project folder
brick.sound.file('mysound.wav')

3.4 Display

x
-------------->

(0, 0) __________________
| |

| | |
y | | Hello |

| | World |
v | |

(continues on next page)

LEGO, the LEGO logo, MINDSTORMS and the MINDSTORMS EV3 logo are trademarks and/or copyrights of the LEGO Group. © 2019 The LEGO Group. All rights reserved.

17

Getting started with EV3 MicroPython Version 1.0.0

(continued from previous page)

|__________________|
(177, 127)

classmethod display.clear()
Clear everything on the display.

classmethod display.text(text, coordinate=None)
Display text.

Parameters

• text (str) – The text to display.

• coordinate (tuple) – (x, y) coordinate tuple. It is the top-left corner of the first
character. If no coordinate is specified, it is printed on the next line.

Example:

Clear the display
brick.display.clear()

Print ``Hello`` near the middle of the screen
brick.display.text("Hello", (60, 50))

Print ``World`` directly underneath it
brick.display.text("World")

classmethod display.image(file_name, alignment=Align.CENTER, coordinate=None, clear=True)
Show an image file.

You can specify its placement either using alignment or by specifying a coordinate, but not both.

Parameters

• file_name (str) – Path to the image file. Paths may be absolute or relative from the
project folder.

• alignment (Align) – Where to place the image (Default: Align.CENTER).

• coordinate (tuple) – (x, y) coordinate tuple. It is the top-left corner of the image
(Default: None).

• clear (bool) – Whether to clear the screen before showing the image (Default: True).

Example:

Show a built-in image of two eyes looking upward
brick.display.image(ImageFile.UP)

Display a custom image from your project folder
brick.display.image('pybricks.png')

Display a custom image at the top right of the screen, without clearing
the screen first
brick.display.image('arrow.png', Align.TOP_RIGHT, clear=False)

LEGO, the LEGO logo, MINDSTORMS and the MINDSTORMS EV3 logo are trademarks and/or copyrights of the LEGO Group. © 2019 The LEGO Group. All rights reserved.

18

Getting started with EV3 MicroPython Version 1.0.0

3.5 Battery

classmethod battery.voltage()
Get the voltage of the battery.

Returns Battery voltage.

Return type voltage: mV

Examples:

Play a warning sound when the battery voltage
is below 7 Volt (7000 mV = 7V)
if brick.battery.voltage() < 7000:

brick.sound.beep()

classmethod battery.current()
Get the current supplied by the battery.

Returns Battery current.

Return type current: mA

LEGO, the LEGO logo, MINDSTORMS and the MINDSTORMS EV3 logo are trademarks and/or copyrights of the LEGO Group. © 2019 The LEGO Group. All rights reserved.

19

CHAPTER

FOUR

EV3DEVICES – EV3 MOTORS AND SENSORS

LEGO® MINDSTORMS® EV3 motors and sensors.

4.1 Motors

class Motor(port, direction=Direction.CLOCKWISE, gears=None)
LEGO® MINDSTORMS® EV3 Medium or Large Motor.

Element 99455/6148292 or 95658/6148278, contained in:

• 31313: LEGO® MINDSTORMS® EV3 (2013)

• 45544: LEGO® MINDSTORMS® Education EV3 Core Set (2013)

• 45503 or 45502: Separate part (2013)

Parameters

• port (Port) – Port to which the motor is connected.

• direction (Direction) – Positive speed direction (Default: Direction.CLOCKWISE).

• gears (list) – List of gears linked to the motor (Default: None).

For example: [12, 36] represents a gear train with a 12-tooth and a 36-tooth gear. See
ratio for illustrated examples.

Use a list of lists for multiple gear trains, such as [[12, 36], [20, 16, 40]].

When you specify a gear train, all motor commands and settings are automatically adjusted
to account for the resulting gear ratio. The motor direction remains unchanged, no matter
how many gears you choose.

For example, with gears=[12, 36], the gear ratio is 3, which means that the output is
mechanically slowed down by a factor of 3. To compensate, the motor will automatically
turn 3 times as fast and 3 times as far when you give a motor command. So when you
choose run_angle(200, 90), your mechanism output simply turns at 200 deg/s for 90
degrees.

The same holds for the documentation below: When it states “motor angle” or “motor
speed”, you can read this as “mechanism output angle” and “mechanism output speed”,
and so on, as the gear ratio is automatically accounted for.

The gears setting is only available for motors with rotation sensors.

Example:

LEGO, the LEGO logo, MINDSTORMS and the MINDSTORMS EV3 logo are trademarks and/or copyrights of the LEGO Group. © 2019 The LEGO Group. All rights reserved.

20

Getting started with EV3 MicroPython Version 1.0.0

Initialize a motor (by default this means clockwise, without any gears).
example_motor = Motor(Port.A)

Initialize a motor where positive speed values should go counterclockwise
right_motor = Motor(Port.B, Direction.COUNTERCLOCKWISE)

Initialize a motor with a gear train
robot_arm = Motor(Port.C, Direction.CLOCKWISE, [12, 36])

Methods for motors without rotation sensors

dc(duty)
Set the duty cycle of the motor.

Parameters duty (percentage: %) – The duty cycle (-100.0 to 100).

Example:

Set the motor duty cycle to 75%.
example_motor.duty(75)

Methods for motors with rotation sensors

angle()
Get the rotation angle of the motor.

Returns Motor angle.

Return type angle: deg

reset_angle(angle)
Reset the accumulated rotation angle of the motor.

Parameters angle (angle: deg) – Value to which the angle should be reset.

speed()
Get the speed (angular velocity) of the motor.

Returns Motor speed.

Return type rotational speed: deg/s

stop(stop_type=Stop.COAST)
Stop the motor.

Parameters stop_type (Stop) – Whether to coast, brake, or hold (Default: Stop.COAST).

run(speed)
Keep the motor running at a constant speed (angular velocity).

The motor will accelerate towards the requested speed and the duty cycle is automatically adjusted to keep
the speed constant, even under some load. This continues in the background until you give the motor a
new command or the program stops.

Parameters speed (rotational speed: deg/s) – Speed of the motor.

run_time(speed, time, stop_type=Stop.COAST, wait=True)
Run the motor at a constant speed (angular velocity) for a given amount of time.

LEGO, the LEGO logo, MINDSTORMS and the MINDSTORMS EV3 logo are trademarks and/or copyrights of the LEGO Group. © 2019 The LEGO Group. All rights reserved.

21

Getting started with EV3 MicroPython Version 1.0.0

The motor will accelerate towards the requested speed and the duty cycle is automatically adjusted to keep
the speed constant, even under some load. It begins to decelerate just in time to reach standstill after the
specified duration.

Parameters

• speed (rotational speed: deg/s) – Speed of the motor.

• time (time: ms) – Duration of the maneuver.

• stop_type (Stop) – Whether to coast, brake, or hold after coming to a standstill (De-
fault: Stop.COAST).

• wait (bool) – Wait for the maneuver to complete before continuing with the rest of the
program (Default: True). This means that your program waits for the specified time.

run_angle(speed, rotation_angle, stop_type=Stop.COAST, wait=True)
Run the motor at a constant speed (angular velocity) by a given angle.

The motor will accelerate towards the requested speed and the duty cycle is automatically adjusted to keep
the speed constant, even under some load. It begins to decelerate just in time so that it comes to a standstill
after traversing the given angle.

Parameters

• speed (rotational speed: deg/s) – Speed of the motor.

• rotation_angle (angle: deg) – Angle by which the motor should rotate.

• stop_type (Stop) – Whether to coast, brake, or hold after coming to a standstill (De-
fault: Stop.COAST).

• wait (bool) – Wait for the maneuver to complete before continuing with the rest of
the program (Default: True). This means that your program waits until the motor has
traveled precisely the requested angle.

run_target(speed, target_angle, stop_type=Stop.COAST, wait=True)
Run the motor at a constant speed (angular velocity) towards a given target angle.

The motor will accelerate towards the requested speed and the duty cycle is automatically adjusted to keep
the speed constant, even under some load. It begins to decelerate just in time so that it comes to a standstill
at the given target angle.

The direction of rotation is automatically selected based on the target angle.

Parameters

• speed (rotational speed: deg/s) – Absolute speed of the motor. The direction will be
automatically selected based on the target angle: it makes no difference if you specify a
positive or negative speed.

• target_angle (angle: deg) – Target angle that the motor should rotate to, regardless
of its current angle.

• stop_type (Stop) – Whether to coast, brake, or hold after coming to a standstill (De-
fault: Stop.COAST).

• wait (bool) – Wait for the maneuver to complete before continuing with the rest of
the program (Default: True). This means that your program waits until the motor has
reached the target angle.

LEGO, the LEGO logo, MINDSTORMS and the MINDSTORMS EV3 logo are trademarks and/or copyrights of the LEGO Group. © 2019 The LEGO Group. All rights reserved.

22

Getting started with EV3 MicroPython Version 1.0.0

Advanced methods for motors with rotation sensors

track_target(target_angle)
Track a target angle that varies in time.

This function is quite similar to run_target(), but speed and acceleration settings are ignored: it will
move to the target angle as fast as possible. Instead, you adjust speed and acceleration by choosing how
fast or slow you vary the target_angle.

This method is useful in fast loops where the motor target changes continuously.

Parameters target_angle (angle: deg) – Target angle that the motor should rotate to.

Example:

Initialize motor and timer
from math import sin
motor = Motor(Port.A)
watch = StopWatch()
amplitude = 90

In a fast loop, compute a reference angle
and make the motor track it.
while True:

Get the time in seconds
seconds = watch.time()/1000
Compute a reference angle. This produces
a sine wave that makes the motor move
smoothly between -90 and +90 degrees.
angle_now = sin(seconds)*amplitude
Make the motor track the given angle
motor.track_target(angle_now)

stalled()
Check whether the motor is currently stalled.

A motor is stalled when it cannot move even with the maximum torque. For example, when something is
blocking the motor or your mechanism simply cannot turn any further.

Specifically, the motor is stalled when the duty cycle computed by the PID controllers has reached the
maximum (so duty = duty_limit) and still the motor cannot reach a minimal speed (so speed <
stall_speed) for a period of at least stall_time.

You can change the duty_limit, stall_speed, and stall_time settings using
set_dc_settings() and set_pid_settings() in order to change the sensitivity to being
stalled.

Returns True if the motor is stalled, False if it is not.

Return type bool

run_until_stalled(speed, stop_type=Stop.COAST, duty_limit=default)
Run the motor at a constant speed (angular velocity) until it stalls. The motor is considered stalled when it
cannot move even with the maximum torque. See stalled() for a more precise definition.

The duty_limit argument lets you temporarily limit the motor torque during this maneuver. This is
useful to avoid applying the full motor torque to a geared or lever mechanism.

Parameters

• speed (rotational speed: deg/s) – Speed of the motor.

LEGO, the LEGO logo, MINDSTORMS and the MINDSTORMS EV3 logo are trademarks and/or copyrights of the LEGO Group. © 2019 The LEGO Group. All rights reserved.

23

Getting started with EV3 MicroPython Version 1.0.0

• stop_type (Stop) – Whether to coast, brake, or hold after coming to a standstill (De-
fault: Stop.COAST).

• duty_limit (percentage: %) – Relative torque limit. This limit works just like
set_dc_settings(), but in this case the limit is temporary: it returns to its previ-
ous value after completing this command.

set_dc_settings(duty_limit, duty_offset)
Configure the settings to adjust the behavior of the dc() command. This also affects all of the run
commands, which use the dc() method in the background.

Parameters

• duty_limit (percentage: %) – Relative torque limit during subsequent motor com-
mands. This sets the maximum duty cycle that is applied during any subsequent motor
command. This reduces the maximum torque output to a percentage of the absolute max-
imum stall torque. This is useful to avoid applying the full motor torque to a geared
or lever mechanism, or to prevent your LEGO® train from unintentionally going at full
speed. (Default: 100).

• duty_offset (percentage: %) – Minimum duty cycle given when you use dc(). This
adds a small feed forward torque so that your motor will move even for very low duty cycle
values, which can be useful when you create your own feedback controllers (Default: 0).

set_run_settings(max_speed, acceleration)
Configure the maximum speed and acceleration/deceleration of the motor for all run commands.

This applies to the run, run_time, run_angle, run_target, or run_until_stalled com-
mands you give the motor. See also the default parameters for each motor.

Parameters

• max_speed (rotational speed: deg/s) – Maximum speed of the motor during a motor
command.

• acceleration (rotational acceleration: deg/s/s) – Acceleration towards the target
speed and deceleration towards standstill. This should be a positive value. The motor
will automatically change the sign to decelerate as needed.

Example:

Set the maximum speed to 200 deg/s and acceleration to 400 deg/s/s.
example_motor.set_run_settings(200, 400)

Make the motor run for 5 seconds. Even though the speed argument is 300
deg/s in this example, the motor will move at only 200 deg/s because of
the settings above.
example_motor.run_time(300, 5000)

set_pid_settings(kp, ki, kd, tight_loop_limit, angle_tolerance, speed_tolerance, stall_speed,
stall_time)

Configure the settings of the position and speed controllers. See also pid and the default parameters for
each motor.

Parameters

• kp (int) – Proportional position (and integral speed) control constant.

• ki (int) – Integral position control constant.

• kd (int) – Derivative position (and proportional speed) control constant.

LEGO, the LEGO logo, MINDSTORMS and the MINDSTORMS EV3 logo are trademarks and/or copyrights of the LEGO Group. © 2019 The LEGO Group. All rights reserved.

24

Getting started with EV3 MicroPython Version 1.0.0

• tight_loop_limit (time: ms) – If you execute any of the run commands within
this interval after starting the previous command, the controllers assume that you want
to control the speed directly. This means that it will ignore the acceleration setting and
immediately begin tracking the speed you give in the run command. This is useful in
a fast loop, where you usually want the motors to respond quickly rather than accelerate
smoothly, for example with a line-following robot.

• angle_tolerance (angle: deg) – Allowed deviation from the target angle before mo-
tion is considered complete.

• speed_tolerance (rotational speed: deg/s) – Allowed deviation from zero speed be-
fore motion is considered complete.

• stall_speed (rotational speed: deg/s) – See stalled().

• stall_time (time: ms) – See stalled().

4.2 Sensors

4.2.1 Touch Sensor

class TouchSensor(port)
LEGO® MINDSTORMS® EV3 Touch Sensor.

Element 95648/6138404, contained in:

• 31313: LEGO® MINDSTORMS® EV3 (2013)

• 45544: LEGO® MINDSTORMS® Education EV3 Core Set (2013)

• 45507: Separate part (2013)

Parameters port (Port) – Port to which the sensor is connected.

pressed()
Check if the sensor is pressed.

Returns True if the sensor is pressed, False if it is not pressed.

Return type bool

4.2.2 Color Sensor

class ColorSensor(port)
LEGO® MINDSTORMS® EV3 Color Sensor.

Element 95650/6128869, contained in:

• 31313: LEGO® MINDSTORMS® EV3 (2013)

• 45544: LEGO® MINDSTORMS® Education EV3 Core Set (2013)

• 45506: Separate part (2013)

Parameters port (Port) – Port to which the sensor is connected.

color()
Measure the color of a surface.

LEGO, the LEGO logo, MINDSTORMS and the MINDSTORMS EV3 logo are trademarks and/or copyrights of the LEGO Group. © 2019 The LEGO Group. All rights reserved.

25

Getting started with EV3 MicroPython Version 1.0.0

Returns Color.BLACK, Color.BLUE, Color.GREEN, Color.YELLOW, Color.RED,
Color.WHITE, Color.BROWN or None.

Return type Color, or None if no color is detected.

ambient()
Measure the ambient light intensity.

Returns Ambient light intensity, ranging from 0 (dark) to 100 (bright).

Return type percentage: %

reflection()
Measure the reflection of a surface using a red light.

Returns Reflection, ranging from 0 (no reflection) to 100 (high reflection).

Return type percentage: %

rgb()
Measure the reflection of a surface using a red, green, and then a blue light.

Returns Reflection for red, green, and blue light, each ranging from 0.0 (no reflection) to 100.0
(high reflection).

Return type tuple of three percentages

4.2.3 Infrared Sensor and Beacon

class InfraredSensor(port)
LEGO® MINDSTORMS® EV3 Infrared Sensor and Beacon.

Element 95654/6132629 and 72156/6127283, contained in:

• 31313: LEGO® MINDSTORMS® EV3 (2013)

• 45509 and 45508: Separate parts (2013)

Parameters port (Port) – Port to which the sensor is connected.

distance()
Measure the relative distance between the sensor and an object using infrared light.

Returns Relative distance ranging from 0 (closest) to 100 (farthest).

Return type relative distance: %

beacon(channel)
Measure the relative distance and angle between the remote and the infrared sensor.

Parameters channel (int) – Channel number of the remote.

Returns Tuple of relative distance (0 to 100) and approximate angle (-75 to 75 degrees) between
remote and infrared sensor.

Return type (relative distance: %, angle: deg) or (None, None) if no remote is detected.

buttons(channel)
Check which buttons on the infrared remote are pressed.

Parameters channel (int) – Channel number of the remote.

Returns List of pressed buttons on the remote on the specified channel.

Return type List of Button

LEGO, the LEGO logo, MINDSTORMS and the MINDSTORMS EV3 logo are trademarks and/or copyrights of the LEGO Group. © 2019 The LEGO Group. All rights reserved.

26

Getting started with EV3 MicroPython Version 1.0.0

4.2.4 Ultrasonic Sensor

class UltrasonicSensor(port)
LEGO® MINDSTORMS® EV3 Ultrasonic Sensor.

Element 95652/6138403, contained in:

• 45544: LEGO® MINDSTORMS® Education EV3 Core Set (2013)

• 45504: Separate part (2013)

Parameters port (Port) – Port to which the sensor is connected.

distance(silent=False)
Measure the distance between the sensor and an object using ultrasonic sound waves.

Parameters silent (bool) – Choose True to turn the sensor off after measuring the distance.

Choose False to leave the sensor on (Default).

When you choose silent=True, the sensor does not emit sounds waves except when
taking the measurement. This reduces interference with other ultrasonic sensors, but turning
the sensor off takes approximately 300 ms each time.

Returns Distance (millimeters).

Return type distance: mm

presence()
Check for the presence of other ultrasonic sensors by detecting ultrasonic sounds.

If the other ultrasonic sensor is operating in silent mode, you can only detect the presence of that sensor
while it is taking a measurement.

Returns True if ultrasonic sounds are detected, False if not.

Return type bool

4.2.5 Gyroscopic Sensor

class GyroSensor(port, direction=Direction.CLOCKWISE)
LEGO® MINDSTORMS® EV3 Gyro Sensor.

Element 99380/6138411, contained in:

• 45544: LEGO® MINDSTORMS® Education EV3 Core Set (2013)

• 45505: Separate part (2013)

Parameters

• port (Port) – Port to which the sensor is connected.

• direction (Direction) – Positive rotation direction when looking at the red dot on
top of the sensor (Default: Direction.CLOCKWISE).

speed()
Get the speed (angular velocity) of the sensor.

Returns Sensor angular velocity.

Return type rotational speed: deg/s

LEGO, the LEGO logo, MINDSTORMS and the MINDSTORMS EV3 logo are trademarks and/or copyrights of the LEGO Group. © 2019 The LEGO Group. All rights reserved.

27

Getting started with EV3 MicroPython Version 1.0.0

angle()
Get the accumulated angle of the sensor.

Returns Rotation angle.

Return type angle: deg

reset_angle(angle)
Set the rotation angle of the sensor to a desired value.

Parameters angle (angle: deg) – Value to which the angle should be reset.

LEGO, the LEGO logo, MINDSTORMS and the MINDSTORMS EV3 logo are trademarks and/or copyrights of the LEGO Group. © 2019 The LEGO Group. All rights reserved.

28

CHAPTER

FIVE

PARAMETERS – PARAMETERS AND CONSTANTS

Constant parameters/arguments for the Pybricks API.

class Port
Port on the EV3 Programmable Brick.

Motor ports:

A

B

C

D

Sensor ports:

S1

S2

S3

S4

class Direction
Rotational direction for positive speed values: clockwise or counterclockwise.

CLOCKWISE
A positive speed value should make the motor move clockwise.

COUNTERCLOCKWISE
A positive speed value should make the motor move counterclockwise.

For all motors, this is defined when looking at the shaft, just like looking at a clock.

For NXT or EV3 motors, make sure to look at the motor with the red/orange shaft to the lower right.

Parameter Positive speed Negative speed
Direction.CLOCKWISE clockwise counterclockwise
Direction.COUNTERCLOCKWISE counterclockwise clockwise

Medium EV3 Motor:

counterclockwise clockwise
____ _____

/ \

(continues on next page)

LEGO, the LEGO logo, MINDSTORMS and the MINDSTORMS EV3 logo are trademarks and/or copyrights of the LEGO Group. © 2019 The LEGO Group. All rights reserved.

29

Getting started with EV3 MicroPython Version 1.0.0

(continued from previous page)

/ _____________ \
/ / \ \
| | _ | |
| | __| |__ | |
v | |__ o __| | v

| |_| |
| |
______________/

Large EV3 Motor:

/ \ ___ ___

_| \ / \
| ----/------ \
counterclockwise | ____ | clockwise

__________ v / \ v
-------| + |

_____/

class Stop
Action after the motor stops: coast, brake, or hold.

COAST
Let the motor move freely.

BRAKE
Passively resist small external forces.

HOLD
Keep controlling the motor to hold it at the commanded angle. This is only available on motors with
encoders.

The stop type defines the resistance to motion after coming to a standstill:

Parameter Resistance Physical meaning
Stop.COAST low Friction
Stop.BRAKE medium Friction + Torque opposite to motion
Stop.HOLD high Friction + Torque to hold commanded angle

class Color
Light or surface color.

BLACK

BLUE

GREEN

YELLOW

RED

WHITE

BROWN

ORANGE

LEGO, the LEGO logo, MINDSTORMS and the MINDSTORMS EV3 logo are trademarks and/or copyrights of the LEGO Group. © 2019 The LEGO Group. All rights reserved.

30

Getting started with EV3 MicroPython Version 1.0.0

PURPLE

class Button
Buttons on a brick or remote:

LEFT_DOWN

DOWN

RIGHT_DOWN

LEFT

CENTER

RIGHT

LEFT_UP

UP

BEACON

RIGHT_UP

LEFT_UP UP/BEACON RIGHT_UP
LEFT CENTER RIGHT
LEFT_DOWN DOWN RIGHT_DOWN

class Align
Alignment of an image on the display.

BOTTOM_LEFT

BOTTOM

BOTTOM_RIGHT

LEFT

CENTER

RIGHT

TOP_LEFT

TOP

TOP_RIGHT

class ImageFile
Paths to standard EV3 images.

Information

RIGHT

FORWARD

ACCEPT

QUESTION_MARK

STOP_1

LEFT

DECLINE

LEGO, the LEGO logo, MINDSTORMS and the MINDSTORMS EV3 logo are trademarks and/or copyrights of the LEGO Group. © 2019 The LEGO Group. All rights reserved.

31

Getting started with EV3 MicroPython Version 1.0.0

THUMBS_DOWN

BACKWARD

NO_GO

WARNING

STOP_2

THUMBS_UP

LEGO

EV3

EV3_ICON

Objects

TARGET

Eyes

BOTTOM_RIGHT

BOTTOM_LEFT

EVIL

CRAZY_2

KNOCKED_OUT

PINCHED_RIGHT

WINKING

DIZZY

DOWN

TIRED_MIDDLE

MIDDLE_RIGHT

SLEEPING

MIDDLE_LEFT

TIRED_RIGHT

PINCHED_LEFT

PINCHED_MIDDLE

CRAZY_1

NEUTRAL

AWAKE

UP

TIRED_LEFT

ANGRY

LEGO, the LEGO logo, MINDSTORMS and the MINDSTORMS EV3 logo are trademarks and/or copyrights of the LEGO Group. © 2019 The LEGO Group. All rights reserved.

32

Getting started with EV3 MicroPython Version 1.0.0

class SoundFile
Paths to standard EV3 sounds.

Expressions

SHOUTING

CHEERING

CRYING

OUCH

LAUGHING_2

SNEEZING

SMACK

BOING

BOO

UH_OH

SNORING

KUNG_FU

FANFARE

CRUNCHING

MAGIC_WAND

LAUGHING_1

Information

LEFT

BACKWARDS

RIGHT

OBJECT

COLOR

FLASHING

ERROR

ERROR_ALARM

DOWN

FORWARD

ACTIVATE

SEARCHING

TOUCH

UP

ANALYZE

STOP

LEGO, the LEGO logo, MINDSTORMS and the MINDSTORMS EV3 logo are trademarks and/or copyrights of the LEGO Group. © 2019 The LEGO Group. All rights reserved.

33

Getting started with EV3 MicroPython Version 1.0.0

DETECTED

TURN

START

Communication

MORNING

EV3

GO

GOOD_JOB

OKEY_DOKEY

GOOD

NO

THANK_YOU

YES

GAME_OVER

OKAY

SORRY

BRAVO

GOODBYE

HI

HELLO

MINDSTORMS

LEGO

FANTASTIC

Movements

SPEED_IDLE

SPEED_DOWN

SPEED_UP

Color

BROWN

GREEN

BLACK

WHITE

RED

BLUE

YELLOW

Mechanical

LEGO, the LEGO logo, MINDSTORMS and the MINDSTORMS EV3 logo are trademarks and/or copyrights of the LEGO Group. © 2019 The LEGO Group. All rights reserved.

34

Getting started with EV3 MicroPython Version 1.0.0

TICK_TACK

HORN_1

BACKING_ALERT

MOTOR_IDLE

AIR_RELEASE

AIRBRAKE

RATCHET

MOTOR_STOP

HORN_2

LASER

SONAR

MOTOR_START

Animals

INSECT_BUZZ_2

ELEPHANT_CALL

SNAKE_HISS

DOG_BARK_2

DOG_WHINE

INSECT_BUZZ_1

DOG_SNIFF

T_REX_ROAR

INSECT_CHIRP

DOG_GROWL

SNAKE_RATTLE

DOG_BARK_1

CAT_PURR

Numbers

ZERO

ONE

TWO

THREE

FOUR

FIVE

SIX

SEVEN

EIGHT

LEGO, the LEGO logo, MINDSTORMS and the MINDSTORMS EV3 logo are trademarks and/or copyrights of the LEGO Group. © 2019 The LEGO Group. All rights reserved.

35

Getting started with EV3 MicroPython Version 1.0.0

NINE

TEN

System

READY

CONFIRM

GENERAL_ALERT

CLICK

OVERPOWER

LEGO, the LEGO logo, MINDSTORMS and the MINDSTORMS EV3 logo are trademarks and/or copyrights of the LEGO Group. © 2019 The LEGO Group. All rights reserved.

36

CHAPTER

SIX

TOOLS – TIMING AND DATALOGGING

Common tools for timing and datalogging.

print(value, ..., sep, end, file, flush)
Print values on the terminal or a stream.

Example:

Print some text
print("Hello, world")

Print some text and a number
print("Value:", 5)

wait(time)
Pause the user program for a specified amount of time.

Parameters time (time: ms) – How long to wait.

class StopWatch
A stopwatch to measure time intervals. Similar to the stopwatch feature on your phone.

time()
Get the current time of the stopwatch.

Returns Elapsed time.

Return type time: ms

pause()
Pause the stopwatch.

resume()
Resume the stopwatch.

reset()
Reset the stopwatch time to 0.

The run state is unaffected:

• If it was paused, it stays paused (but now at 0).

• If it was running, it stays running (but starting again from 0).

LEGO, the LEGO logo, MINDSTORMS and the MINDSTORMS EV3 logo are trademarks and/or copyrights of the LEGO Group. © 2019 The LEGO Group. All rights reserved.

37

CHAPTER

SEVEN

ROBOTICS – ROBOTICS MODULE

Robotics module for the Pybricks API.

class DriveBase(left_motor, right_motor, wheel_diameter, axle_track)
Class representing a robotic vehicle with two powered wheels and optional wheel caster(s).

Parameters

• left_motor (Motor) – The motor that drives the left wheel.

• right_motor (Motor) – The motor that drives the right wheel.

• wheel_diameter (dimension: mm) – Diameter of the wheels.

• axle_track (dimension: mm) – Distance between the midpoints of the two wheels.

Example:

Initialize two motors and a drive base
left = Motor(Port.B)
right = Motor(Port.C)
robot = DriveBase(left, right, 56, 114)

drive(speed, steering)
Start driving at the specified speed and turnrate, both measured at the center point between the wheels of
the robot.

Parameters

• speed (speed: mm/s) – Forward speed of the robot.

• steering (rotational speed: deg/s) – Turn rate of the robot.

Example:

Initialize two motors and a drive base
left = Motor(Port.B)
right = Motor(Port.C)
robot = DriveBase(left, right, 56, 114)

Initialize a sensor
sensor = UltrasonicSensor(Port.S4)

Drive forward until an object is detected
robot.drive(100, 0)
while sensor.distance() > 500:

wait(10)
robot.stop()

LEGO, the LEGO logo, MINDSTORMS and the MINDSTORMS EV3 logo are trademarks and/or copyrights of the LEGO Group. © 2019 The LEGO Group. All rights reserved.

38

Getting started with EV3 MicroPython Version 1.0.0

drive_time(speed, steering, time)
Drive at the specified speed and turnrate for a given amount of time, and then stop.

Parameters

• speed (speed: mm/s) – Forward speed of the robot.

• steering (rotational speed: deg/s) – Turn rate of the robot.

• time (time: ms) – Duration of the maneuver.

Example:

Drive forward at 100 mm/s for two seconds
robot.drive(100, 0, 2000)

Turn at 45 deg/s for three seconds
robot.drive(0, 45, 3000)

stop(stop_type=Stop.COAST)
Stop the robot.

Parameters stop_type (Stop) – Whether to coast, brake, or hold (Default: Stop.COAST).

LEGO, the LEGO logo, MINDSTORMS and the MINDSTORMS EV3 logo are trademarks and/or copyrights of the LEGO Group. © 2019 The LEGO Group. All rights reserved.

39

CHAPTER

EIGHT

SIGNALS AND UNITS

Many commands allow you to specify arguments in terms of well-known physical quantities. This page gives an
overview of each quantity and its unit.

8.1 time: ms

All time and duration values are measured in milliseconds (ms).

For example, the duration of motion with run_time, the duration of wait, or the time values returned by the
StopWatch are specified in milliseconds.

8.2 angle: deg

All angles are measured in degrees (deg). One full rotation corresponds to 360 degrees.

For example, the angle values of a Motor or the GyroSensor are expressed in degrees.

8.3 rotational speed: deg/s

Rotational speed, or angular velocity describes how fast something rotates, expressed as the number of degrees per
second (deg/s).

For example, the rotational speed values of a Motor or the GyroSensor are expressed in degrees per second.

While we recommend working with degrees per second in your programs, you can use the following table to convert
between commonly used units.

deg/s rpm
1 deg/s = 1 1/6=0.167
1 rpm = 6 1

8.4 distance: mm

Distances are expressed in millimeters (mm) whenever possible.

For example, the distance value of the UltrasonicSensor is measured in millimeters.

LEGO, the LEGO logo, MINDSTORMS and the MINDSTORMS EV3 logo are trademarks and/or copyrights of the LEGO Group. © 2019 The LEGO Group. All rights reserved.

40

Getting started with EV3 MicroPython Version 1.0.0

While we recommend working with millimeters in your programs, you can use the following table to convert between
commonly used units.

mm cm inch
1 mm = 1 0.1 0.0394
1 cm = 10 1 0.394
1 inch = 25.4 2.54 1

8.5 dimension: mm

Dimensions are expressed in millimeters (mm) whenever possible, just like distances.

For example, the diameter of a wheel is measured in millimeters.

8.6 relative distance: %

Some distance measurements do not provide an accurate value with a specific unit, but they range from very close
(0%) to very far (100%). These are referred to as relative distances.

For example, the distance value of the InfraredSensor is a relative distance.

8.7 speed: mm/s

Linear speeds are expressed as millimeters per second (mm/s).

For example, the speed of a robotic vehicle is expressed in mm/s.

8.8 rotational acceleration: deg/s/s

Rotational acceleration, or angular acceleration describes how fast the rotational speed changes. This is expressed
as the change of the number of degrees per second, during one second (deg/s/s). This is also commonly written as
𝑑𝑒𝑔/𝑠2.

For example, you can adjust the rotational acceleration setting of a Motor to change how smoothly or how quickly it
reaches the constant speed set point.

8.9 percentage: %

Some signals do not have specific units but range from a minimum (0%) to a maximum (100%). A specific type of
percentages are relative distances.

For example, the sound volume ranges from 0% to 100%.

LEGO, the LEGO logo, MINDSTORMS and the MINDSTORMS EV3 logo are trademarks and/or copyrights of the LEGO Group. © 2019 The LEGO Group. All rights reserved.

41

Getting started with EV3 MicroPython Version 1.0.0

8.10 frequency: Hz

Sound frequencies are expressed in Hertz (Hz).

For example, you can choose the frequency of a beep to change the pitch.

8.11 voltage: mV

Voltages are expressed in millivolt (mV).

For example, you can check the voltage of the battery .

8.12 current: mA

Electrical currents are expressed in milliampere (mA).

For example, you can check the current supplied by the battery .

LEGO, the LEGO logo, MINDSTORMS and the MINDSTORMS EV3 logo are trademarks and/or copyrights of the LEGO Group. © 2019 The LEGO Group. All rights reserved.

42

CHAPTER

NINE

ROBOT EDUCATOR

This example makes the Robot Educator (Figure 9.1) drive until it sees an obstacle. It then backs up, turns around, and
starts driving again.

You can find building instructions for the Robot Educator on the LEGO Education website.

Figure 9.1: Robot Educator with the Ultrasonic Sensor

#!/usr/bin/env pybricks-micropython

from pybricks import ev3brick as brick
from pybricks.ev3devices import Motor, UltrasonicSensor
from pybricks.parameters import Port
from pybricks.tools import wait
from pybricks.robotics import DriveBase

(continues on next page)

LEGO, the LEGO logo, MINDSTORMS and the MINDSTORMS EV3 logo are trademarks and/or copyrights of the LEGO Group. © 2019 The LEGO Group. All rights reserved.

43

https://education.lego.com/en-us/support/mindstorms-ev3/building-instructions#robot

Getting started with EV3 MicroPython Version 1.0.0

(continued from previous page)

Play a sound.
brick.sound.beep()

Initialize the Ultrasonic Sensor. It is used to detect
obstacles as the robot drives around.
obstacle_sensor = UltrasonicSensor(Port.S4)

Initialize two motors with default settings on Port B and Port C.
These will be the left and right motors of the drive base.
left_motor = Motor(Port.B)
right_motor = Motor(Port.C)

The wheel diameter of the Robot Educator is 56 millimeters.
wheel_diameter = 56

The axle track is the distance between the centers of each of the wheels.
For the Robot Educator this is 114 millimeters.
axle_track = 114

The DriveBase is composed of two motors, with a wheel on each motor.
The wheel_diameter and axle_track values are used to make the motors
move at the correct speed when you give a motor command.
robot = DriveBase(left_motor, right_motor, wheel_diameter, axle_track)

The following loop makes the robot drive forward until it detects an
obstacle. Then it backs up and turns around. It keeps on doing this
until you stop the program.
while True:

Begin driving forward at 200 millimeters per second.
robot.drive(200, 0)

Wait until an obstacle is detected. This is done by repeatedly
doing nothing (waiting for 10 milliseconds) while the measured
distance is still greater than 300 mm.
while obstacle_sensor.distance() > 300:

wait(10)

Drive backward at 100 millimeters per second. Keep going for 2 seconds.
robot.drive_time(-100, 0, 2000)

Turn around at 60 degrees per second, around the midpoint between
the wheels. Keep going for 2 seconds.
robot.drive_time(0, 60, 2000)

LEGO, the LEGO logo, MINDSTORMS and the MINDSTORMS EV3 logo are trademarks and/or copyrights of the LEGO Group. © 2019 The LEGO Group. All rights reserved.

44

CHAPTER

TEN

COLOR SORTER

This example program for the color sorter (Figure 10.1) lets you scan colored Technic beams using the Color Sensor.

Scan the colored beams one by one and add them to the tray. A beep confirms that it has registered the color. When
the tray is full or when you press the center button, the robot will start distributing the Technic bricks by color.

You can find building instructions for the color sorter on the LEGO Education website.

Figure 10.1: Color Sorter

#!/usr/bin/env pybricks-micropython

from pybricks import ev3brick as brick
from pybricks.ev3devices import Motor, TouchSensor, ColorSensor

(continues on next page)

LEGO, the LEGO logo, MINDSTORMS and the MINDSTORMS EV3 logo are trademarks and/or copyrights of the LEGO Group. © 2019 The LEGO Group. All rights reserved.

45

https://le-www-live-s.legocdn.com/sc/media/lessons/mindstorms-ev3/building-instructions/ev3-model-core-set-color-sorter-c778563f88c986841453574495cb5ff1.pdf

Getting started with EV3 MicroPython Version 1.0.0

(continued from previous page)

from pybricks.parameters import Port, Button, Color, ImageFile, SoundFile
from pybricks.tools import wait

The colored objects are either red, green, blue, or yellow.
POSSIBLE_COLORS = (Color.RED, Color.GREEN, Color.BLUE, Color.YELLOW)

Initialize the motors that drive the conveyor belt and eject the objects.
belt_motor = Motor(Port.D)
feed_motor = Motor(Port.A)

Initialize the Touch Sensor. It is used to detect when the belt motor
has moved the sorter module all the way to the left.
touch_sensor = TouchSensor(Port.S1)

Initialize the Color Sensor. It is used to detect the color of the objects.
color_sensor = ColorSensor(Port.S3)

This is the main loop. It waits for you to scan and insert 8 colored objects.
Then it sorts them by color. Then the process starts over and you can scan
and insert the next set of colored objects.
while True:

Get the feed motor in the correct starting position.
This is done by running the motor forward until it stalls. This
means that it cannot move any further. From this end point, the motor
rotates backward by 180 degrees. Then it is in the starting position.
feed_motor.run_until_stalled(120)
feed_motor.run_angle(450, -180)

Get the conveyor belt motor in the correct starting position.
This is done by first running the belt motor backward until the
touch sensor becomes pressed. Then the motor stops, and the the angle is
reset to zero. This means that when it rotates backward to zero later
on, it returns to this starting position.
belt_motor.run(-500)
while not touch_sensor.pressed():

pass
belt_motor.stop()
wait(1000)
belt_motor.reset_angle(0)

Clear all the contents from the display.
brick.display.clear()

When we scan the objects, we store all the color numbers in a list.
We start with an empty list. It will grow as we add colors to it.
color_list = []

This loop scans the colors of the objects. It repeats until 8 objects
are scanned and placed in the chute. This is done by repeating the loop
while the length of the list is still less than 8.
while len(color_list) < 8:

Show an arrow that points to the color sensor.
brick.display.image(ImageFile.RIGHT)

Show how many colored objects we have already scanned.
brick.display.text(len(color_list))

(continues on next page)

LEGO, the LEGO logo, MINDSTORMS and the MINDSTORMS EV3 logo are trademarks and/or copyrights of the LEGO Group. © 2019 The LEGO Group. All rights reserved.

46

Getting started with EV3 MicroPython Version 1.0.0

(continued from previous page)

Wait for the center button to be pressed or a color to be scanned.
while True:

Store True if the center button is pressed or False if not.
pressed = Button.CENTER in brick.buttons()
Store the color measured by the Color Sensor.
color = color_sensor.color()
If the center button is pressed or a color is detected,
break out of the loop.
if pressed or color in POSSIBLE_COLORS:

break

if pressed:
If the button was pressed, end the loop early.
We will no longer wait for any remaining objects
to be scanned and added to the chute.
break

else:
Otherwise, a color was scanned.
So we add (append) it to the list.
brick.sound.beep(1000, 100, 100)
color_list.append(color)

We don't want to register the same color once more if we're
still looking at the same object. So before we continue, we
wait until the sensor no longer sees the object.
while color_sensor.color() in POSSIBLE_COLORS:

pass
brick.sound.beep(2000, 100, 100)

Show an arrow pointing to the center button,
to ask if we are done.
brick.display.image(ImageFile.BACKWARD)
wait(2000)

Play a sound and show an image to indicate that we are done scanning.
brick.sound.file(SoundFile.READY)
brick.display.image(ImageFile.EV3)

Now sort the bricks according the list of colors that we stored.
We do this by going over each color in the list in a loop.
for color in color_list:

Wait for one second between each sorting action.
wait(1000)

Run the conveyor belt motor to the right position based on the color.
if color == Color.BLUE:

brick.sound.file(SoundFile.BLUE)
belt_motor.run_target(500, 10)

elif color == Color.GREEN:
brick.sound.file(SoundFile.GREEN)
belt_motor.run_target(500, 132)

elif color == Color.YELLOW:
brick.sound.file(SoundFile.YELLOW)
belt_motor.run_target(500, 360)

elif color == Color.RED:
brick.sound.file(SoundFile.RED)

(continues on next page)

LEGO, the LEGO logo, MINDSTORMS and the MINDSTORMS EV3 logo are trademarks and/or copyrights of the LEGO Group. © 2019 The LEGO Group. All rights reserved.

47

Getting started with EV3 MicroPython Version 1.0.0

(continued from previous page)

belt_motor.run_target(500, 530)

Now that the conveyor belt is in the correct position,
eject the colored object.
feed_motor.run_angle(1500, 90)
feed_motor.run_angle(1500, -90)

LEGO, the LEGO logo, MINDSTORMS and the MINDSTORMS EV3 logo are trademarks and/or copyrights of the LEGO Group. © 2019 The LEGO Group. All rights reserved.

48

CHAPTER

ELEVEN

ROBOT ARM H25

This example program makes the robot (Figure 11.1) move the black wheel hub stacks around forever. The robot arm
will first initialize and then start moving the hubs around.

You can find building instructions for the robot on the LEGO Education website.

Tip: When building the robot, reverse the orientation of the EV3 Brick such that the microSD card is easily accessible.

Figure 11.1: Robot Arm H25

#!/usr/bin/env pybricks-micropython

(continues on next page)

LEGO, the LEGO logo, MINDSTORMS and the MINDSTORMS EV3 logo are trademarks and/or copyrights of the LEGO Group. © 2019 The LEGO Group. All rights reserved.

49

https://le-www-live-s.legocdn.com/sc/media/lessons/mindstorms-ev3/building-instructions/ev3-model-core-set-robot-arm-h25-56cdb22c1e3a02f1770bda72862ce2bd.pdf

Getting started with EV3 MicroPython Version 1.0.0

(continued from previous page)

from pybricks import ev3brick as brick
from pybricks.ev3devices import Motor, TouchSensor, ColorSensor
from pybricks.parameters import Port, Stop, Direction
from pybricks.tools import wait

Configure the gripper motor on Port A with default settings.
gripper_motor = Motor(Port.A)

Configure the elbow motor. It has an 8-teeth and a 40-teeth gear
connected to it. We would like positive speed values to make the
arm go upward. This corresponds to counterclockwise rotation
of the motor.
elbow_motor = Motor(Port.B, Direction.COUNTERCLOCKWISE, [8, 40])

Configure the motor that rotates the base. It has a 12-teeth and a
36-teeth gear connected to it. We would like positive speed values
to make the arm go away from the Touch Sensor. This corresponds
to counterclockwise rotation of the motor.
base_motor = Motor(Port.C, Direction.COUNTERCLOCKWISE, [12, 36])

Limit the elbow and base accelerations. This results in
very smooth motion. Like an industrial robot.
elbow_motor.set_run_settings(60, 120)
base_motor.set_run_settings(60, 120)

Set up the Touch Sensor. It acts as an end-switch in the base
of the robot arm. It defines the starting point of the base.
base_switch = TouchSensor(Port.S1)

Set up the Color Sensor. This sensor detects when the elbow
is in the starting position. This is when the sensor sees the
white beam up close.
elbow_sensor = ColorSensor(Port.S3)

Initialize the elbow. First make it go down for one second.
Then make it go upwards slowly (15 degrees per second) until
the Color Sensor detects the white beam. Then reset the motor
angle to make this the zero point. Finally, hold the motor
in place so it does not move.
elbow_motor.run_time(-30, 1000)
elbow_motor.run(15)
while elbow_sensor.reflection() < 32:

wait(10)
elbow_motor.reset_angle(0)
elbow_motor.stop(Stop.HOLD)

Initialize the base. First rotate it until the Touch Sensor
in the base is pressed. Reset the motor angle to make this
the zero point. Then hold the motor in place so it does not move.
base_motor.run(-60)
while not base_switch.pressed():

wait(10)
base_motor.reset_angle(0)
base_motor.stop(Stop.HOLD)

Initialize the gripper. First rotate the motor until it stalls.
Stalling means that it cannot move any further. This position

(continues on next page)

LEGO, the LEGO logo, MINDSTORMS and the MINDSTORMS EV3 logo are trademarks and/or copyrights of the LEGO Group. © 2019 The LEGO Group. All rights reserved.

50

Getting started with EV3 MicroPython Version 1.0.0

(continued from previous page)

corresponds to the closed position. Then rotate the motor
by 90 degrees such that the gripper is open.
gripper_motor.run_until_stalled(200, Stop.COAST, 50)
gripper_motor.reset_angle(0)
gripper_motor.run_target(200, -90)

def robot_pick(position):
This function makes the robot base rotate to the indicated
position. There it lowers the elbow, closes the gripper, and
raises the elbow to pick up the object.

Rotate to the pick-up position.
base_motor.run_target(60, position, Stop.HOLD)
Lower the arm.
elbow_motor.run_target(60, -40)
Close the gripper to grab the wheel stack.
gripper_motor.run_until_stalled(200, Stop.HOLD, 50)
Raise the arm to lift the wheel stack.
elbow_motor.run_target(60, 0, Stop.HOLD)

def robot_release(position):
This function makes the robot base rotate to the indicated
position. There it lowers the elbow, opens the gripper to
release the object. Then it raises its arm again.

Rotate to the drop-off position.
base_motor.run_target(60, position, Stop.HOLD)
Lower the arm to put the wheel stack on the ground.
elbow_motor.run_target(60, -40)
Open the gripper to release the wheel stack.
gripper_motor.run_target(200, -90)
Raise the arm.
elbow_motor.run_target(60, 0, Stop.HOLD)

Play three beeps to indicate that the initialization is complete.
brick.sound.beeps(3)

Define the three destinations for picking up and moving the wheel stacks.
LEFT = 160
MIDDLE = 100
RIGHT = 40

This is the main part of the program. It is a loop that repeats endlessly.
#
First, the robot moves the object on the left towards the middle.
Second, the robot moves the object on the right towards the left.
Finally, the robot moves the object that is now in the middle, to the right.
#
Now we have a wheel stack on the left and on the right as before, but they
have switched places. Then the loop repeats to do this over and over.
while True:

Move a wheel stack from the left to the middle.
robot_pick(LEFT)
robot_release(MIDDLE)

(continues on next page)

LEGO, the LEGO logo, MINDSTORMS and the MINDSTORMS EV3 logo are trademarks and/or copyrights of the LEGO Group. © 2019 The LEGO Group. All rights reserved.

51

Getting started with EV3 MicroPython Version 1.0.0

(continued from previous page)

Move a wheel stack from the right to the left.
robot_pick(RIGHT)
robot_release(LEFT)

Move a wheel stack from the middle to the right.
robot_pick(MIDDLE)
robot_release(RIGHT)

LEGO, the LEGO logo, MINDSTORMS and the MINDSTORMS EV3 logo are trademarks and/or copyrights of the LEGO Group. © 2019 The LEGO Group. All rights reserved.

52

PYTHON MODULE INDEX

e
ev3brick, 16
ev3devices, 20

p
parameters, 29

r
robotics, 38

t
tools, 37

LEGO, the LEGO logo, MINDSTORMS and the MINDSTORMS EV3 logo are trademarks and/or copyrights of the LEGO Group. © 2019 The LEGO Group. All rights reserved.

53

INDEX

A
Align (class in parameters), 31
Align.BOTTOM (in module parameters), 31
Align.BOTTOM_LEFT (in module parameters), 31
Align.BOTTOM_RIGHT (in module parameters), 31
Align.CENTER (in module parameters), 31
Align.LEFT (in module parameters), 31
Align.RIGHT (in module parameters), 31
Align.TOP (in module parameters), 31
Align.TOP_LEFT (in module parameters), 31
Align.TOP_RIGHT (in module parameters), 31
ambient() (ColorSensor method), 26
angle() (GyroSensor method), 27
angle() (Motor method), 21

B
beacon() (InfraredSensor method), 26
beep() (ev3brick.sound class method), 17
beeps() (ev3brick.sound class method), 17
Button (class in parameters), 31
Button.BEACON (in module parameters), 31
Button.CENTER (in module parameters), 31
Button.DOWN (in module parameters), 31
Button.LEFT (in module parameters), 31
Button.LEFT_DOWN (in module parameters), 31
Button.LEFT_UP (in module parameters), 31
Button.RIGHT (in module parameters), 31
Button.RIGHT_DOWN (in module parameters), 31
Button.RIGHT_UP (in module parameters), 31
Button.UP (in module parameters), 31
buttons() (in module ev3brick), 16
buttons() (InfraredSensor method), 26

C
clear() (ev3brick.display class method), 18
Color (class in parameters), 30
color() (ColorSensor method), 25
Color.BLACK (in module parameters), 30
Color.BLUE (in module parameters), 30
Color.BROWN (in module parameters), 30
Color.GREEN (in module parameters), 30
Color.ORANGE (in module parameters), 30

Color.PURPLE (in module parameters), 30
Color.RED (in module parameters), 30
Color.WHITE (in module parameters), 30
Color.YELLOW (in module parameters), 30
ColorSensor (class in ev3devices), 25
current() (ev3brick.battery class method), 19

D
dc() (Motor method), 21
Direction (class in parameters), 29
Direction.CLOCKWISE (in module parameters), 29
Direction.COUNTERCLOCKWISE (in module pa-

rameters), 29
distance() (InfraredSensor method), 26
distance() (UltrasonicSensor method), 27
drive() (DriveBase method), 38
drive_time() (DriveBase method), 38
DriveBase (class in robotics), 38

E
ev3brick (module), 16
ev3devices (module), 20

F
file() (ev3brick.sound class method), 17

G
GyroSensor (class in ev3devices), 27

I
image() (ev3brick.display class method), 18
ImageFile (class in parameters), 31
ImageFile.ACCEPT (in module parameters), 31
ImageFile.ANGRY (in module parameters), 32
ImageFile.AWAKE (in module parameters), 32
ImageFile.BACKWARD (in module parameters), 32
ImageFile.BOTTOM_LEFT (in module parameters),

32
ImageFile.BOTTOM_RIGHT (in module parameters),

32
ImageFile.CRAZY_1 (in module parameters), 32
ImageFile.CRAZY_2 (in module parameters), 32

LEGO, the LEGO logo, MINDSTORMS and the MINDSTORMS EV3 logo are trademarks and/or copyrights of the LEGO Group. © 2019 The LEGO Group. All rights reserved.

54

Getting started with EV3 MicroPython Version 1.0.0

ImageFile.DECLINE (in module parameters), 31
ImageFile.DIZZY (in module parameters), 32
ImageFile.DOWN (in module parameters), 32
ImageFile.EV3 (in module parameters), 32
ImageFile.EV3_ICON (in module parameters), 32
ImageFile.EVIL (in module parameters), 32
ImageFile.FORWARD (in module parameters), 31
ImageFile.KNOCKED_OUT (in module parameters),

32
ImageFile.LEFT (in module parameters), 31
ImageFile.MIDDLE_LEFT (in module parameters),

32
ImageFile.MIDDLE_RIGHT (in module parameters),

32
ImageFile.NEUTRAL (in module parameters), 32
ImageFile.NO_GO (in module parameters), 32
ImageFile.PINCHED_LEFT (in module parameters),

32
ImageFile.PINCHED_MIDDLE (in module parame-

ters), 32
ImageFile.PINCHED_RIGHT (in module parame-

ters), 32
ImageFile.QUESTION_MARK (in module parame-

ters), 31
ImageFile.RIGHT (in module parameters), 31
ImageFile.SLEEPING (in module parameters), 32
ImageFile.STOP_1 (in module parameters), 31
ImageFile.STOP_2 (in module parameters), 32
ImageFile.TARGET (in module parameters), 32
ImageFile.THUMBS_DOWN (in module parameters),

31
ImageFile.THUMBS_UP (in module parameters), 32
ImageFile.TIRED_LEFT (in module parameters), 32
ImageFile.TIRED_MIDDLE (in module parameters),

32
ImageFile.TIRED_RIGHT (in module parameters),

32
ImageFile.UP (in module parameters), 32
ImageFile.WARNING (in module parameters), 32
ImageFile.WINKING (in module parameters), 32
InfraredSensor (class in ev3devices), 26

L
light() (in module ev3brick), 16

M
Motor (class in ev3devices), 20

P
parameters (module), 29
pause() (StopWatch method), 37
Port (class in parameters), 29
Port.A (in module parameters), 29
Port.B (in module parameters), 29

Port.C (in module parameters), 29
Port.D (in module parameters), 29
Port.S1 (in module parameters), 29
Port.S2 (in module parameters), 29
Port.S3 (in module parameters), 29
Port.S4 (in module parameters), 29
presence() (UltrasonicSensor method), 27
pressed() (TouchSensor method), 25
print() (in module tools), 37

R
reflection() (ColorSensor method), 26
reset() (StopWatch method), 37
reset_angle() (GyroSensor method), 28
reset_angle() (Motor method), 21
resume() (StopWatch method), 37
rgb() (ColorSensor method), 26
robotics (module), 38
run() (Motor method), 21
run_angle() (Motor method), 22
run_target() (Motor method), 22
run_time() (Motor method), 21
run_until_stalled() (Motor method), 23

S
set_dc_settings() (Motor method), 24
set_pid_settings() (Motor method), 24
set_run_settings() (Motor method), 24
SoundFile (class in parameters), 32
SoundFile.ACTIVATE (in module parameters), 33
SoundFile.AIR_RELEASE (in module parameters),

35
SoundFile.AIRBRAKE (in module parameters), 35
SoundFile.ANALYZE (in module parameters), 33
SoundFile.BACKING_ALERT (in module parame-

ters), 35
SoundFile.BACKWARDS (in module parameters), 33
SoundFile.BLACK (in module parameters), 34
SoundFile.BLUE (in module parameters), 34
SoundFile.BOING (in module parameters), 33
SoundFile.BOO (in module parameters), 33
SoundFile.BRAVO (in module parameters), 34
SoundFile.BROWN (in module parameters), 34
SoundFile.CAT_PURR (in module parameters), 35
SoundFile.CHEERING (in module parameters), 33
SoundFile.CLICK (in module parameters), 36
SoundFile.COLOR (in module parameters), 33
SoundFile.CONFIRM (in module parameters), 36
SoundFile.CRUNCHING (in module parameters), 33
SoundFile.CRYING (in module parameters), 33
SoundFile.DETECTED (in module parameters), 33
SoundFile.DOG_BARK_1 (in module parameters), 35
SoundFile.DOG_BARK_2 (in module parameters), 35
SoundFile.DOG_GROWL (in module parameters), 35

LEGO, the LEGO logo, MINDSTORMS and the MINDSTORMS EV3 logo are trademarks and/or copyrights of the LEGO Group. © 2019 The LEGO Group. All rights reserved.

55

Getting started with EV3 MicroPython Version 1.0.0

SoundFile.DOG_SNIFF (in module parameters), 35
SoundFile.DOG_WHINE (in module parameters), 35
SoundFile.DOWN (in module parameters), 33
SoundFile.EIGHT (in module parameters), 35
SoundFile.ELEPHANT_CALL (in module parame-

ters), 35
SoundFile.ERROR (in module parameters), 33
SoundFile.ERROR_ALARM (in module parameters),

33
SoundFile.EV3 (in module parameters), 34
SoundFile.FANFARE (in module parameters), 33
SoundFile.FANTASTIC (in module parameters), 34
SoundFile.FIVE (in module parameters), 35
SoundFile.FLASHING (in module parameters), 33
SoundFile.FORWARD (in module parameters), 33
SoundFile.FOUR (in module parameters), 35
SoundFile.GAME_OVER (in module parameters), 34
SoundFile.GENERAL_ALERT (in module parame-

ters), 36
SoundFile.GO (in module parameters), 34
SoundFile.GOOD (in module parameters), 34
SoundFile.GOOD_JOB (in module parameters), 34
SoundFile.GOODBYE (in module parameters), 34
SoundFile.GREEN (in module parameters), 34
SoundFile.HELLO (in module parameters), 34
SoundFile.HI (in module parameters), 34
SoundFile.HORN_1 (in module parameters), 35
SoundFile.HORN_2 (in module parameters), 35
SoundFile.INSECT_BUZZ_1 (in module parame-

ters), 35
SoundFile.INSECT_BUZZ_2 (in module parame-

ters), 35
SoundFile.INSECT_CHIRP (in module parameters),

35
SoundFile.KUNG_FU (in module parameters), 33
SoundFile.LASER (in module parameters), 35
SoundFile.LAUGHING_1 (in module parameters), 33
SoundFile.LAUGHING_2 (in module parameters), 33
SoundFile.LEFT (in module parameters), 33
SoundFile.LEGO (in module parameters), 34
SoundFile.MAGIC_WAND (in module parameters), 33
SoundFile.MINDSTORMS (in module parameters), 34
SoundFile.MORNING (in module parameters), 34
SoundFile.MOTOR_IDLE (in module parameters), 35
SoundFile.MOTOR_START (in module parameters),

35
SoundFile.MOTOR_STOP (in module parameters), 35
SoundFile.NINE (in module parameters), 35
SoundFile.NO (in module parameters), 34
SoundFile.OBJECT (in module parameters), 33
SoundFile.OKAY (in module parameters), 34
SoundFile.OKEY_DOKEY (in module parameters), 34
SoundFile.ONE (in module parameters), 35
SoundFile.OUCH (in module parameters), 33

SoundFile.OVERPOWER (in module parameters), 36
SoundFile.RATCHET (in module parameters), 35
SoundFile.READY (in module parameters), 36
SoundFile.RED (in module parameters), 34
SoundFile.RIGHT (in module parameters), 33
SoundFile.SEARCHING (in module parameters), 33
SoundFile.SEVEN (in module parameters), 35
SoundFile.SHOUTING (in module parameters), 33
SoundFile.SIX (in module parameters), 35
SoundFile.SMACK (in module parameters), 33
SoundFile.SNAKE_HISS (in module parameters), 35
SoundFile.SNAKE_RATTLE (in module parameters),

35
SoundFile.SNEEZING (in module parameters), 33
SoundFile.SNORING (in module parameters), 33
SoundFile.SONAR (in module parameters), 35
SoundFile.SORRY (in module parameters), 34
SoundFile.SPEED_DOWN (in module parameters), 34
SoundFile.SPEED_IDLE (in module parameters), 34
SoundFile.SPEED_UP (in module parameters), 34
SoundFile.START (in module parameters), 34
SoundFile.STOP (in module parameters), 33
SoundFile.T_REX_ROAR (in module parameters), 35
SoundFile.TEN (in module parameters), 36
SoundFile.THANK_YOU (in module parameters), 34
SoundFile.THREE (in module parameters), 35
SoundFile.TICK_TACK (in module parameters), 34
SoundFile.TOUCH (in module parameters), 33
SoundFile.TURN (in module parameters), 34
SoundFile.TWO (in module parameters), 35
SoundFile.UH_OH (in module parameters), 33
SoundFile.UP (in module parameters), 33
SoundFile.WHITE (in module parameters), 34
SoundFile.YELLOW (in module parameters), 34
SoundFile.YES (in module parameters), 34
SoundFile.ZERO (in module parameters), 35
speed() (GyroSensor method), 27
speed() (Motor method), 21
stalled() (Motor method), 23
Stop (class in parameters), 30
stop() (DriveBase method), 39
stop() (Motor method), 21
Stop.BRAKE (in module parameters), 30
Stop.COAST (in module parameters), 30
Stop.HOLD (in module parameters), 30
StopWatch (class in tools), 37

T
text() (ev3brick.display class method), 18
time() (StopWatch method), 37
tools (module), 37
TouchSensor (class in ev3devices), 25
track_target() (Motor method), 23

LEGO, the LEGO logo, MINDSTORMS and the MINDSTORMS EV3 logo are trademarks and/or copyrights of the LEGO Group. © 2019 The LEGO Group. All rights reserved.

56

Getting started with EV3 MicroPython Version 1.0.0

U
UltrasonicSensor (class in ev3devices), 27

V
voltage() (ev3brick.battery class method), 19

W
wait() (in module tools), 37

LEGO, the LEGO logo, MINDSTORMS and the MINDSTORMS EV3 logo are trademarks and/or copyrights of the LEGO Group. © 2019 The LEGO Group. All rights reserved.

57

	Installation
	Creating and running programs
	ev3brick – The EV3 Programmable Brick
	ev3devices – EV3 Motors and Sensors
	parameters – Parameters and Constants
	tools – Timing and Datalogging
	robotics – Robotics module
	Signals and Units
	Robot Educator
	Color Sorter
	Robot Arm H25
	Python Module Index
	Index

